Support Vector Regression Filtering for Reduction of False Positives in a Mass Detection Cad Scheme: Preliminary Results

نویسندگان

  • Enrico Angelini
  • Renato Campanini
  • Alessandro Riccardi
چکیده

Reduction of False Positive signals (FPR) is a fundamental, yet awkward, step in computer aided mass detection schemes. This paper describes preliminary results of a filtering approach to FPR based on Support Vector Regression (SVR), a machine learning algorithm arising from a well-founded theoretical framework, the Statistical Learning Theory, which has recently proved to be superior to the conventional Neural Network framework for both classification and regression tasks: indeed, the proposed filtering method belongs to the family of neural filters. The SVR filter is forced to associate subregions extracted from input images, masses and non-masses, to continuous output values ranging from 0 to 1 representing a measure of the presence in the subregion of a mass. A weighted sum of outputs over each image is used to accomplish the FPR task. In the test phase, this approach reached promising results, retaining 87% of masses while reducing False Positives to 62%. “This work has been submitted to the IEEE ICIP05 for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.” SUPPORT VECTOR REGRESSION FILTERING FOR REDUCTION OF FALSE POSITIVES IN A MASS DETECTION CAD SCHEME: PRELIMINARY RESULTS Enrico Angelini, Renato Campanini and Alessandro Riccardi Department of Physics, University of Bologna, Italy Corresponding author: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Method for Mammography Mass Detection Based on Wavelet Transform

Introduction:  Breast  cancer  is  a  leading  cause  of  death  among  females  throughout  the  world.  Currently,  radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD)  can play an important role in helping radiologists perform more accurate diagnoses.   Material and Methods: Using our hybrid method, the background and the pectoral muscle...

متن کامل

Employing topographical height map in colonic polyp measurement and false positive reduction

CT Colonography (CTC) is an emerging minimally invasive technique for screening and diagnosing colon cancers. Computer Aided Detection (CAD) techniques can increase sensitivity and reduce false positives. Inspired by the way radiologists detect polyps via 3D virtual fly-through in CTC, we borrowed the idea from geographic information systems to employ topographical height map in colonic polyp m...

متن کامل

Mass detection in digitized mammograms using two independent computer-assisted diagnosis schemes.

OBJECTIVE Using two independent computer-assisted diagnosis (CAD) schemes, we investigated the potential to improve the sensitivity of mass detection by applying a logical "or" operation and to improve the specificity using a logical "and" operation. MATERIALS AND METHODS Two independent mass detectors, one with Gaussian bandpass filtering and multilayer topographic feature analysis and the o...

متن کامل

False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network.

RATIONALE AND OBJECTIVE We developed a technique that uses a multiple massive-training artificial neural network (multi-MTANN) to reduce the number of false-positive results in a computer-aided diagnostic (CAD) scheme for detecting nodules in chest radiographs. MATERIALS AND METHODS Our database consisted of 91 solitary pulmonary nodules, including 64 malignant nodules and 27 benign nodules, ...

متن کامل

Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor

Computer-aided detection (CAD) can help radiologists to detect pulmonary nodules at an early stage. In pulmonary nodule CAD systems, feature extraction is very important for describing the characteristics of nodule candidates. In this paper, we propose a novel three-dimensional shape-based feature descriptor to detect pulmonary nodules in CT scans. After lung volume segmentation, nodule candida...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005